Genel Forumlar Haylazforum.Net

Genel Forumlar Haylazforum.Net (https://haylazforum.net/)
-   Açık Öğretim (AÖF) (https://haylazforum.net/79-acik-ogretim-aof/)
-   -   matematik-özdeşlikler-denklem ve eşitsizlik (https://haylazforum.net/acik-ogretim-aof/1261-matematik-ozdeslikler-denklem-ve-esitsizlik.html)

Rwa 12.Aralık.2018 21:09

matematik-özdeşlikler-denklem ve eşitsizlik
 
matematik-özdeşlikler-denklem ve eşitsizlik
Özdeşlik, Denklemler ve Eşitsizlikler


( # ) Parantez Açılımları

a ( x + b ) = ax + b Örnek: 4 ( x + 5 ) = 4x + 20

x ( x + a ) = x² + ax Örnek: 3x ( x + 2 ) = 3x² + 6x

Örnekleri çoğaltabilirsiniz.


( # ) Ortak Parantez Alma

x² + ax = x.x + a.x = x ( x + a )

Örnek: x² - x = x.x - 1.x = x ( x- 1 )

Örnekleri çoğaltabilirsiniz.


( # ) Tam Kare

Tam karenin hikayesi şudur: 1. karesi + 1. ile 2.'nin çarpımının 2 katı + 2.'nin karesi

Denklem ( x + k )² olsun.
Formül olarak ise x² - 2kx + k² ' dir.

Örnek: ( x + 2 )² = x² + 4x + 4

Örnekleri çoğaltabilirsiniz.



( # ) İki Kare Farkı

Genel formülü, x² - a² = ( x - a )( x + a ) 'dır.

Örnek: x² - 4 = ( x - 2 )( x + 2 )
Örnek: x² + 4 = ifadesinin özdeşi yoktur.

Örnekleri çoğaltabilirsiniz.


( # ) İki Küp Toplamı ve Farkı

x³ + y³ = ( x + y )( x² - xy + y²) veya x³ - y³ 0 ( x -y )( x² + xy + y² )

Örnek: x³ + 8 = ( x + 2 )( x² - 2x + 4 )

Örnekleri Çoğaltabilirsiniz.


( # ) Birinci Dereceden Bir Bilinmeyenli Denklemler

a ve b bir sayı ve a sıfırdan farklı olmak üzere,

ax + b = 0 birinci dereceden denklemdir.

Not: Birinci dereceden denklemi çözmek için x'i yalnız bırakıp eşitliğin diğer tarafındaki sayıya bölmek gerekir.

Not: Eşitliğin her iki tarafında da x değeri varsa eğer; x'li olan değerler bir tarafa, tam sayılar ise bir tarafa toplanarak işlem yapılır.

Örnek: 5x - 6 = 2x + 6 denkleminde x kaçtır.

5x - 2x = 6 + 6 ( x'li ifadeleri bir tarafa tam sayılı ifadeleri bir tarafa topladık)
3x = 12
x = 4 olarak bulunur.

Örnekleri Çoğaltabilirsiniz.

Not: Denklemimizde kesirli ifade varsa eğer, önce kesirden kurtarmamız gerekir. Kurtardıktan sonra denklemi çözebiliriz.

Örnek: 1/4 ( x - 1 ) = 2 denkleminde x kaçtır.

4.1/4 ( x - 1 ) = 2.4 ( Kesirden kurtarmak için eşitliğin her iki tarafını da payda ile çarptık. )
( x - 1 ) = 8 ( Denklemi çözebiliriz. )
x = 9


Tüm Zamanlar GMT +3 Olarak Ayarlanmış. Şuanki Zaman: 04:11.

Powered by vBulletin® Version 3.8.9
Copyright © 2025 vBulletin Solutions, Inc. All rights reserved.
Search Engine Optimization by vBSEO 3.6.1

User Alert System provided by Advanced User Tagging (Lite) - vBulletin Mods & Addons Copyright © 2025 DragonByte Technologies Ltd.Navbar with Avatar by Motorradforum